SAE MINI BAJA Front & Rear End

Front End: **Will Preston Jacob Grudynski Jesse Summers Michael Edirmannasinghe** Rear End: **Jacob Ruiz Lucas Cramer Aaron King**

Proudly Sponsored By:

Project Description

- SAE Baja is a collegiate competition in which teams design, build, and test offroading vehicles
- Vehicles are presented in competition to a fictitious firm for possible manufacturing
- Designs must abide by Baja SAE competition rules in order to compete
- Must be able to perform well in Dynamic and Static events o Acceleration Test
	- o Braking Test
	- \circ Hillclimb
	- o Endurance
- Sponsors include W.L. Gore, NAU and SAE International

Black Box Model - Rear End

Detailed Decomposition Model (Rear End)

Black Box Model - Front End

Detailed Decomposition Model (Front End)

Concept Generation – Rear End

Advantages:

- Increases travel
- Lower unsprung weight
- Better ride quality
- Independent suspension

Disadvantages:

- Long rear links
- Hard to manufacture

Figure 2: Tailing Arm with Links from Rear

Concept Generation (Double Wishbone) - Rear End

Advantages:

• Allows movement only in vertical direction to fix the toe Angle

Disadvantages:

- Requires a change to the frame
- Heavy

Figure 3: Double Wishbone

Concept Generation (Single Part Trailing Arm) - Rear End

Figure 4: Tailing Arm Single Part

Figure 5: Tailing Arm Single Part Only

Advantages:

- Lightweight
- **Easy Mounting**
- Durable

Disadvantages:

- Any failure leads to full system failure
- Difficult hub/axle connections (manufacturing)

Decision Matrix – Rear End

Table 1: Decision Matrix (Rear End)

Concept Generation – MacPherson Strut

Advantages:

- fewer number of parts

Disadvantages:

- not used for off-road platforms
- not easily mounted to tube frames

Concept Generation - Double Wishbone A

Advantages:

• Maintains desired alignment specifications

Disadvantages:

- Limited space between components, restricts maneuverability
- Difficult to repair

Figure 7: Double Wishbone A and the Contract of the Contract o

Concept Generation – Double Wishbone B

Advantages:

- Consistent alignment
- Allows space for steering, drivetrain components

Disadvantages:

Requires high upper shock mounting point

Figure 8: Double Wishbone B

Table 2: Decision Matrix (Front End)

CAD – Rear End

Figure 8: Rear End Back View [2,3] Figure 9: Rear End Isometric View [2,3] Figure 10: Rear End without Tire [2,3]

CAD – Front End

Figure 11: Rack and Pinion Steering

- Rack and Pinion Steering System
- Aluminum components.
- Expecting Aluminum Steering Column.
- **Track Width**
- $FE 55$ in
- $RE 58$ in
- **Wheelbase –** 60 in
- **Ackermann angles**
- $L 48.72$ degrees
- $R 28.28$ degrees
- **Mounting angle**
- 24.62 degrees

16

CAD – Front End

Figure 12: Front End CAD Isometric View Figure 13: Front End CAD Top View Figure 14: Front End CAD Hub

CAD – Front End

Figure 15: Front End CAD

Bill of Materials – Rear End

Table 3: Rear End Bill of Materials [3,4,5,6]

Figure 16: Rear End Budget Breakdown

Bill of Materials – Front End

Table 4: Front End Bill of Materials

Questions?

References

- [1]P. Czop, "Application of an Inverse Data-Driven Model for Reconstructing Wheel Movement Signals", *Research Gate*, 2019. [Online]. Available: https://www.researchgate.net/figure/A-schematic-view-of-a-McPherson-front-strut-suspensionsystem_fig1_273249518. [Accessed: 07- Oct- 2019].
- [2]B. Koubaa, "Grabcad," 10 May 2012. [Online]. Available: https://grabcad.com/library/bicycle-shocks-burner-rcp. [Accessed 7 October 2019].
- [3]McMaster-Carr. [Online]. Available: https://www.mcmaster.com. [Accessed 6 October 2019].
- [4]A. Marketplace, "Polaris New OEM Bearing Ball Sealed," [Online]. Available: https://www.amazon.com. [Accessed 6 October 2019].
- [5]Fox, "FACTORY SERIES FLOAT 3 EVOL RC2," [Online]. Available:
- https://www.ridefox.com/product.php?m=atv&t=shocks&p=1149&ref=family. [Accessed 6 October 2019].
- [6]Partzilla. [Online]. Available: https://www.partzilla.com/product/polaris/1520263-
	- 463?ref=d5473e3fd0ef85e6063d67b2d931889e5ebdedca. [Accessed 6 October 2019].
- [7] Dixon, *Suspension geometry and computation*, 1st ed. Chichester: John Wiley, 2009.

SAE MINI BAJA FRAME & DRIVETRAIN

Frame: Jacob Kelley Riley Karg Drivetrain: Tye Jorgenson Jacob Najmy Kaleb Brunmeier

Proudly Sponsored By:

Project Description

General:

- Design and build a single-seat, all-terrain vehicle to compete in the SAE Baja Collegiate Competition
- Entire vehicle built within the limits of the official rulebook
- Performance measured by success in the static and dynamic events at competition in April

Frame:

- Cage designed and fabricated to withstand critical failure during normal operation, collision, or roll over
- Interfaces with all other sub-teams
- All welding done in-house

Drivetrain:

- Responsible for transmitting engine power to vehicle propulsion
- Up to 150 bonus points for operational 4WD/AWD system

Figure 1: 2018-19 NAU Baja [1]

Black Box Model

Detailed Decomposition Model

Drivetrain Concept Generation (ECVT)

Generation Type: Gallery Method, Directed Search

Figure 2: Spring 2019 Linear Design [1]

Advantages:

- Lower initial cost
- ✓ Robust Design

Disadvantages:

- × Hard to Manufacture
- × Large Moment on Stepper Motor Bracket
- × Heavy Design with Solid Shafts

Generation Type: Gallery Method, C-sketch

Figure 3: Fall 2019 Design Iteration

Advantages:

- User Input or automatic mode
- Different modes based on terrain
- \checkmark Centralized Design (No moment on stepper motor) **Disadvantages:**
- × Battery reliant
- × Possible stepper motor overheating

Jacob Najmy

Drivetrain Concept Generation (Transfer Case)

Generation Type: Gallery Method, Directed Search

Figure 4: Concept 1

Advantages:

- \checkmark Allows motion to be transmitted perpendicular to the engine
- Simple Gear geometry that allows for easy of manufacturing **Disadvantages:**
- × Larger Housing requiring more lubricant (Heavy Design)
- × Complex Machining
- × Does not allow for placement of CVT within the frame

Generation Type: Gallery Method, Directed Search

Figure 5: Bevel Gear Concept 2

Advantages:

- Allows motion to be transmitted perpendicular to the engine
- Disengaged front driveline for less driveline resistance

Disadvantages:

- × Complex design
- × Complex machining
- \times Geometry restriction (Mounting at an angle for the CVT)²⁸

SAE INTERNATIONAL

Jacob Najmy

Drivetrain Concept Generation (Gear Reduction)

Generation Type: Gallery Method, Directed Search Generation Type: Gallery Method, Directed Search

Figure 7: Pulley Gear Reduction

Advantages:

- Efficient Power Transmission (98%)
- Lightweight 'Dry' System does not need lubricant
- \checkmark Little drivetrain noise at high speeds

Disadvantages:

- × Tensioning require
- × Maintenance intensive (belt replacements)

Advantages:

- Built-in transmission guard
- ✓ Environment Proof

Disadvantages:

- × Heavy 'Wet' System needs lubricant
- × High Machining Cost and Schedule Critical

Figure 6: Spur Gear Reduction [##]

× High Tolerance Gear Mating

SAE INTERNATIONAL

Jacob Najmy

29

Drivetrain Concept Selection: Pugh Charts

Speed Reducer Pugh Chart

Transfer Case Pugh Chart

Figure 8:Speed Reducer Pugh Chart Figure 9: Transfer Case Pugh Chart

- Criteria derived from House of Quality criteria
- Speed Reducer Designs to Consider: Spur Gear Reduction, Timing Belt Reduction
- Transfer Case Designs to Consider: Differential Concept 1, Simplified Bevel

Drivetrain Concept Selection: Decision Matrices

Figure 10: Speed Reducer Decision Matrix Figure 11: Transfer Case Decision Matrix

- Major Criteria: Weight, Efficiency, 2-Stage Reduction
- Minor Criteria: Audible Volume, Approximate Height, Maintenance
- Final Speed Reducer: Timing Belt Drive
- o Reduced Weight, Slight Volume Increase
- Final Transfer Case: Simplified Bevel System
- o Least Weight, Highest Efficiency (least components)

Frame Concept Generation

Straight Front Bracing Members

• Higher top impact resistance

Bent Front Bracing Members

• Allows wider cockpit area

Additional Bend in Roll Hoop

• Distributes impact loading evenly

No Additional Bend in Roll Hoop

• Bigger driver clearances

Strait Upper Nose Members

• Higher front impact resistance

Bent Upper Nose Members

• Narrows nose for front end

Frame Decision Matrix

Figure 15: Frame Decision Matrix

- Few factors are decided upon.
- Most of frame geometry is predetermined.
- Even material selection lacks diversity of options.

Frame Decision Making

Design Necessities

- Must be compatible with front and rear suspension.
- Must allow space for all other subsystems.
- Must ensure certain subsystems are fully enclosed by the frame.
- Must comply with all rules.
- Must be able to easily adapt while in design phase.

Accounting for Design Necessities

- Multiple meetings/briefing with other sub-teams.
- Understanding how the frame affects other sub-teams.
- Understanding how other sub-teams affects the frame.
- Constant design updates being created and shared with the entire team.
- Checking each change with the rules to ensure compliance.

Frame Material Calculations

Figure 18: Frame Material Calculations

- Used excel sheet to calculate various materials and sizes.
- Objective is to find the lightest weight material that meets the minimum requirement.
- For primary tubing, a 1.25" OD and 0.065" wall thickness yielded the lowest weight.
- For secondary tubing, a 1.00" OD and 0.058" wall thickness was chosen.
- For tertiary tubing, a 1.00" OD and 0.035" wall thickness was chosen.

Frame Final CAD

Figure 19: Rear View Figure 20: Top View

No Additional Bend in the Roll Hoop

Adhering to rules on bent member lengths

Easier to fabricate

Bent Front Bracing Members Strong enough in FEA

Larger cockpit

Strait Upper Nose Members

More compact nose

Easier to fabricate

Better interface for front end to work with

> Higher front impact resistance

Frame FEA

Nine Scenarios simulated for multiple impact conditions

- Used overestimates for impacts and weights
- Lowest FOS of 1.65 was the top front impact with driver
- This is lower than we would like but this scenario highly unlikely

Figure 21: Frame FEA Analysis

Bill of Materials

Figure : Drivetrain/Frame BOM

Questions?

[1] (Najmy, Janshah, ElShamsi, Jorgenson, & Smith, 2019) Final Proposal for SAE Baja ECVT, 2019

[2] Grainger. Power Drive Pulleys. <https://www.grainger.com/category/power-transmission/sheaves-and-pulleys/timing-belt-pulleys>