SAE MINI BAJA Front & Rear End

Front End:Will PrestonRear End:Jacob RuizJacob GrudynskiLucas CramerJesse SummersAaron KingMichael Edirmannasinghe

Proudly Sponsored By:

Project Description

- SAE Baja is a collegiate competition in which teams design, build, and test offroading vehicles
- Vehicles are presented in competition to a fictitious firm for possible manufacturing
- Designs must abide by Baja SAE competition rules in order to compete
- Must be able to perform well in Dynamic and Static events
 - Acceleration Test
 - Braking Test
 - \circ Hillclimb
 - Endurance
- Sponsors include W.L. Gore, NAU and SAE International

Black Box Model - Rear End

Detailed Decomposition Model (Rear End)

Black Box Model - Front End

Detailed Decomposition Model (Front End)

6

Concept Generation – Rear End

Advantages:

- Increases travel
- Lower unsprung weight
- Better ride quality
- Independent suspension

Disadvantages:

- Long rear links
- Hard to manufacture

Figure 2: Tailing Arm with Links from Rear

Concept Generation (Double Wishbone) - Rear End

Advantages:

 Allows movement only in vertical direction to fix the toe Angle

Disadvantages:

- Requires a change to the frame
- Heavy

Figure 3: Double Wishbone

Concept Generation (Single Part Trailing Arm) - Rear End

Figure 4: Tailing Arm Single Part

Figure 5: Tailing Arm Single Part Only

Advantages:

- Lightweight
- Easy Mounting
- Durable

Disadvantages:

- Any failure leads to full system failure
- Difficult hub/axle connections (manufacturing)

Decision Matrix – Rear End

Decision Matrix								
CN's	Weight	Double Wishbone		Single Piece	Trailing Arm	Trailing Arm Two Lateral Links		
		Score(1-5)	Weighted	Score(1-5)	Weighted	Score(1-5)	Weighted	
Safe	15%	5	0.75	2	0.3	4	0.6	
Durable	15%	3	0.45	2	0.3	4	0.6	
Lightweight	20%	1	0.2	5	1	3	0.6	
Ease of Production	10%	2	0.2	3	0.3	3	0.3	
Cost	15%	2	0.3	5	0.75	3	0.45	
Performance	25%	4	1	3	0.75	5	1.25	
Totals:	100%		2.9		3.4		3.8	

Table 1: Decision Matrix (Rear End)

Concept Generation – MacPherson Strut

Advantages:

- fewer number of parts

Disadvantages:

- not used for off-road platforms
- not easily mounted to tube frames

Concept Generation - Double Wishbone A

Advantages:

Maintains desired alignment specifications

Disadvantages:

- Limited space between components, restricts maneuverability
- Difficult to repair

Figure 7: Double Wishbone A

Concept Generation – Double Wishbone B

Advantages:

- Consistent alignment
- Allows space for steering, drivetrain components

Disadvantages:

 Requires high upper shock mounting point

Figure 8: Double Wishbone B

Table 2: Decision Matrix (Front End)

	(1-5)			
Criteria	Customer Weight	Double Wishbone B (top A-arm shock mount)	Double Wishbone A (bottom A-arm shock mount)	MacPherson Strut
Reliable	5	4	5	3
Durable	5	4	4	3
Lightweight	4	3	3	4
Maneuverable	4	5	2	3
Low Cost	5	3	3	4
Easy Field Repair	3	3	2	4
Short Stopping Distance	4	4	4	3
Short Wheel Base	4	3	3	3
Ride Height	4	3	3	3
Track Width	4	4	4	2
Safe to Operate	5	4	2	4
Total		40	35	36
Relative Ranking		172	152	154

CAD – Rear End

Figure 8: Rear End Back View [2,3]

Figure 9: Rear End Isometric View [2,3]

Figure 10: Rear End without Tire [2,3]

CAD – Front End

Figure 11: Rack and Pinion Steering

- Rack and Pinion Steering
 System
- Aluminum components.
- Expecting Aluminum Steering Column.
- Track Width
- FE 55 in
- RE 58 in
- Wheelbase 60 in
- Ackermann angles
- L 48.72 degrees
- R 28.28 degrees
- Mounting angle
- 24.62 degrees

CAD – Front End

Figure 12: Front End CAD Isometric View

Figure 13: Front End CAD Top View

Figure 14: Front End CAD Hub

CAD – Front End

Figure 15: Front End CAD

Bill of Materials – Rear End

Qty	Description		Cost	Total Cost
	Super-Swivel Ball			
8	Joint Rod Ends	\$	21.94	\$175.52
1	Steel Sheet	\$	47.53	\$47.53
1	Steel Bar Stock	\$	57.94	\$57.94
4	Polaris Rear Hub	\$	75.99	\$303.96
4	Steel Tubing	\$	77.59	\$310.36
2	Aluminum Rod	\$	40.63	\$81.26
	Fox Factory Series			
1	Float 3 Evol RC2	\$ 1	1,595.00	\$1,595.00
	1/2" Ball Joint Rod			
8	Ends	\$	7.08	\$56.64
2	Rim, Flat Black	\$	92.80	\$185.60
2	Rear Tire	\$	205.99	\$411.98
	Total			\$3,225.79

Table 3: Rear End Bill of Materials [3,4,5,6]

Figure 16: Rear End Budget Breakdown

Bill of Materials – Front End

	_	-	-				
			Bill of Materials	- Initial			
					Ted		
Davt #	Team Dart Name	Obr	Functions	Baja Front	End Ectimated Unit Cost	Ectimated Total Cost	Linke
Part #	Part Name	Qty	Functions	Material	Estimated Unit Cost	Estimated Total Cost	LINKS
	A . A		Currentian Current	4130 Chromoly	50.00	300.00	
1	A- AITIIS	4	Suspension System	rubing	50.00	200.00	https://www.polorioportabourgo.com/comports/p/pol/Ec20140f075066
2	Uluba	2		Alumainium	102.00	201.00	nttps://www.polarispartsnouse.com/oemparts/a/pol/5c38140r8/a866
2	Hubs		running wheels	Aluminium	102.00	204.00	1/14/3029a/suspension-front-camer
2	Knucklos	2	Mounting A Arms and stooring	Stool	164.00	228.00	171472b20p/suspension_front_corrier
3	KHUCKIES	2	Mounting A-Arms and steering	SLEEP	104.00	328.00	1/14/3029a/suspension-iront-carrier
							nttps://www.summitracing.com/parts/kss-20001-
	Charles	2	Domoning imports		474.05	048.10	0dpV/Wy/vpPK7Lk/vse9P, pV/sV/zPO32mz0U124UbsC66EOAvD, DwE
4	SHOCKS	2	Dampning impacts		474.03	948.10	bttnay//www.bbwbaalaanling.com/comington.utv.bwd/abat.atv
-	Wheels	-	Moving Paia	Stool	70.07	157.04	https://www.bbwneeisoniine.com/remington-utv-buckShot-atv- whoolg rime gatin black 12v7 (v110 0mm offect RS12204205R/
	Rotors	- 4	Proking System	Steel	/8.9/	157.94	wheels-hins-saun-black-12x7-4x110-binin-bitset-b5127043058/
0	KOLOIS	2	braking system	SLEEP	20.00	40.00	http://laraging.com/banda_try250r_ato250r_staiplage_stapl_front_brake
7	Prako linoa	2	Distributing broke fluid to system		100.00	200.00	http://isracing.com/nonua-trx250r-atc250r-stainless-steel-iront-brake-
- /	Brake Calliners	- 2	Mounting Braking system	Aluminium	74.00	200.00	intes-universal.372.2.dtv-utv-rading
0	Brake Calipers		Hydraulic Prossure	Aluminium	74.99	149.90	Walmart
10	Master Brake Cylinder	4	Hydraulic Pressure		2.97	11.00	wainarc
11	Brake nads	4	Stop wheels rotation	Ceramic	45.00	90.00	O'Reillys
			btop wheels rotation	Cerdinie	45.00	50.00	https://www.superaty.com/polaris_rzr-yp_1000_rackboss_beavy_duty_
							rack-and-ninion-
							aroup2aclid=CiwKCAiwxOveRRAiEiwAuX7L8l7LpixlxoezE01w80uPBo1a
12	Steering rack and pinion	1	Steering	Aluminium	200.05	200.05	wBsT72IVLIS4tpT07tixgG8r1_AXXpBoC7IMOAvD_BwE
	Steering rack and pinion	-	breening	Alaminan	255.55	255.55	d01ab2seid=srese1&adid=CiwKCAiwxOvsBRAiFiwAuY7L8v6OdkR2pd
							0-09nf01y-DW1stWYKLrLmiXYVdBCH50-
13	Steering Column	1	Steering	Aluminium	220.00	220.00	GIGOOKGZ2CROCESMOAVD_BWE
- 15	Steering column	-	beeching	Alaminiani	220.00	220.00	https://www.amazon.com/Empi Ball Joint Loft
							Puggy/dp/P002L10V9L/rof-bcc_df_P002L10V9L/2tbg-byprod
							$\frac{buqqy/up/bu05ij0160/1ei-asc}{208linkCode=df08byodid=2210422200258bypos=1o18bypotw=a8by}$
							rand=2580168634257857066&bynone=&byntwo=&byamt=&bydey=c
							& hydroint=& hylocohy=1013406& hytraid=aud-
14	Tie Rods	2	Mount steering rack to knuckle	Aluminium	34.95	69.90	700728744414/nla-635082283416⊁=1
14	The Rods	~	Fiddlic sceening rack to knuckle	Aluminium	54.95	05.50	https://www.suppritacing.com/parts/adb-41-
							35582seid=srese1&aclid=CiwKCAiwxOvsBRAiEiwAuX7L8uelaf4WXsz-
15	Ball joints	8	Mounting	4130 Chromoly	18.99	151.92	wo3YEbEPD7to1irNRgBsOTRonV/wGu3k7aoBDuOR1NboCOgkOAvD_BwE
16	Nuts & Bolts	20	Attachments and mounting	Steel	0.00	0.00	Easily accessible
17	Tires	2	Traction	Rubber	60.99	121.98	
					00155	121130	
		To	tal Cost Estimate:	1	3193.65		
			Allocating Budget	4000.00			

Table 4: Front End Bill of Materials

Questions?

References

- [1]P. Czop, "Application of an Inverse Data-Driven Model for Reconstructing Wheel Movement Signals", *Research Gate*, 2019.
 [Online]. Available: https://www.researchgate.net/figure/A-schematic-view-of-a-McPherson-front-strut-suspension-system_fig1_273249518. [Accessed: 07- Oct- 2019].
- [2]B. Koubaa, "Grabcad," 10 May 2012. [Online]. Available: https://grabcad.com/library/bicycle-shocks-burner-rcp. [Accessed 7 October 2019].
- [3]McMaster-Carr. [Online]. Available: https://www.mcmaster.com. [Accessed 6 October 2019].
- [4]A. Marketplace, "Polaris New OEM Bearing Ball Sealed," [Online]. Available: https://www.amazon.com. [Accessed 6 October 2019].
- [5]Fox, "FACTORY SERIES FLOAT 3 EVOL RC2," [Online]. Available:
- https://www.ridefox.com/product.php?m=atv&t=shocks&p=1149&ref=family. [Accessed 6 October 2019].
- [6]Partzilla. [Online]. Available: https://www.partzilla.com/product/polaris/1520263-
- 463?ref=d5473e3fd0ef85e6063d67b2d931889e5ebdedca. [Accessed 6 October 2019].
- [7] Dixon, Suspension geometry and computation, 1st ed. Chichester: John Wiley, 2009.

SAE MINI BAJA FRAME & DRIVETRAIN

Frame:Jacob KelleyDrivetrain:Tye JorgensonRiley KargJacob NajmyLogKaleb Brunmeier

Proudly Sponsored By:

Project Description

General:

- Design and build a single-seat, all-terrain vehicle to compete in the SAE Baja Collegiate Competition
- Entire vehicle built within the limits of the official rulebook
- Performance measured by success in the static and dynamic events at competition in April

Frame:

- Cage designed and fabricated to withstand critical failure during normal operation, collision, or roll over
- · Interfaces with all other sub-teams
- All welding done in-house

Drivetrain:

- Responsible for transmitting engine power to vehicle propulsion
- Up to 150 bonus points for operational 4WD/AWD system

Figure 1: 2018-19 NAU Baja [1]

Black Box Model

Detailed Decomposition Model

Drivetrain Concept Generation (ECVT)

Generation Type: Gallery Method, Directed Search

Figure 2: Spring 2019 Linear Design [1]

Advantages:

- ✓ Lower initial cost
- ✓ Robust Design

Disadvantages:

- × Hard to Manufacture
- × Large Moment on Stepper Motor Bracket
- × Heavy Design with Solid Shafts

Generation Type: Gallery Method, C-sketch

Figure 3: Fall 2019 Design Iteration

Advantages:

- User Input or automatic mode
- ✓ Different modes based on terrain
- Centralized Design (No moment on stepper motor)
 Disadvantages:
- × Battery reliant
- × Possible stepper motor overheating

Drivetrain Concept Generation (Transfer Case)

<u>Generation Type</u>: Gallery Method, Directed Search

Figure 4: Concept 1

Advantages:

- ✓ Allows motion to be transmitted perpendicular to the engine
- ✓ Simple Gear geometry that allows for easy of manufacturing Disadvantages:
- × Larger Housing requiring more lubricant (Heavy Design)
- × Complex Machining
- × Does not allow for placement of CVT within the frame

Generation Type: Gallery Method, Directed Search

Figure 5: Bevel Gear Concept 2

Advantages:

- ✓ Allows motion to be transmitted perpendicular to the engine
- ✓ Disengaged front driveline for less driveline resistance

Disadvantages:

- × Complex design
- × Complex machining
- × Geometry restriction (Mounting at an angle for the CVT) 28

SAE INTERNATIONAL

Jacob Najmy

Drivetrain Concept Generation (Gear Reduction)

Figure 6: Spur Gear Reduction [##]

Advantages:

- ✓ Built-in transmission guard
- ✓ Environment Proof

Disadvantages:

- × Heavy 'Wet' System needs lubricant
- × High Machining Cost and Schedule Critical
- × High Tolerance Gear Mating

Generation Type: Gallery Method, Directed Search

Figure 7: Pulley Gear Reduction

Advantages:

- ✓ Efficient Power Transmission (98%)
- ✓ Lightweight 'Dry' System does not need lubricant
- ✓ Little drivetrain noise at high speeds

Disadvantages:

- × Tensioning require
- × Maintenance intensive (belt replacements)

SAE INTERNATIONAL

Jacob Najmy

29

Drivetrain Concept Selection: Pugh Charts

Speed Reducer Pugh Chart

Criteria	Spur Gear	Timing Belt	Helical Gear	Chain Drive	Direct Drive
Weight	0	+	0	+	+
Approximate Width	0	-	0	+	+
Approximate Height	0	0	0	+	+
Approximate Length	0	-	0	2	+
Efficiency	0	+		5	8.75
2-stage reduction capable	0	+	0	2	8 2 8
Thermal E. Generation	0	+		+	(17)
Audible Volume	0	+	+	28	923
Maintenance	0	+	0		8.75
	840 D	TOTALS			2
Positives	0	6	1	4	0
Negatives	0	2	2	5	5
Final:	0	44%	-11%	- <mark>11%</mark>	-56%

Figure 8:Speed Reducer Pugh Chart

Transfer Case Pugh Chart

Criteria	Classic Transfer Case	Classic Differential	Simplified Bevel	Diff. Concept 1	Diff. Concept 2	Diff. Concept 3
Weight	0	-	0	+	14	() - ()
Approximate Width	0	5	+	+	0	0
Approximate Height	0	-	+	+	0	0
Approximate Length	0	5	+	+	0	0
Efficiency	0	+	+	(1 -)	18	(.
Reduction Capable	0	+	+	+	+	+
Thermal E. Generation	0	0	0		8	1.000
Audible Volume	0	0	0		1	1.11
Maintenance	0	-	0	0	0	0
		то	TALS			
Positives	0	2	5	5	1	1
Negatives	0	5	0	3	4	4
Final:	0%	-33%	56%	22%	-33%	-33%

Figure 9: Transfer Case Pugh Chart

- Criteria derived from House of Quality criteria
- Speed Reducer Designs to Consider: Spur Gear Reduction, Timing Belt Reduction
- Transfer Case Designs to Consider: Differential Concept 1, Simplified Bevel

Drivetrain Concept Selection: Decision Matrices

Speed Reducer Decision Matrix								
Criteria	Weight	Concept						
		Spur	Gear	Timing Belt				
		score	total	score	total			
Weight	33	3	90	5	150			
Approximate Width	6	3	21	2	14			
Approximate Height	3	3	15	2	10			
Approximate Length	10	4	40	3	30			
Efficiency	20	3	75	4	100			
2-stage reduction capable	15	4	40	4	40			
Thermal E. Generation	7	3	21	2	14			
Audible Volume	1	1	1	3	3			
Maintenance	5	2	10	2	10			
TOTALS	100		313		371			

Figure 10: Speed Reducer Decision Matrix

- Major Criteria: Weight, Efficiency, 2-Stage Reduction
- Minor Criteria: Audible Volume, Approximate Height, Maintenance
- Final Speed Reducer: Timing Belt Drive
- o Reduced Weight, Slight Volume Increase
- Final Transfer Case: Simplified Bevel System
- Least Weight, Highest Efficiency (least components)

Transfer Case Decision Matrix								
Criteria	Weight	Concept						
		Simplifi	ed Bevel	Diff.Co	ncept 1			
		score	total	score	total			
Weight	30	3	90	4	120			
Approximate Width	7	2	14	2	14			
Approximate Height	5	3	15	2	10			
Approximate Length	10	5	50	3	30			
Efficiency	25	5	125	3	75			
Reduction Capable	10	3	30	4	40			
Thermal E. Generation	7	4	28	1	7			
Audible Volume	1	3	3	2	2			
Maintenance	5	4	20	3	15			
TOTALS	100		375		313			

Figure 11: Transfer Case Decision Matrix

Frame Concept Generation

Straight Front Bracing Members

• Higher top impact resistance

Bent Front Bracing Members

• Allows wider cockpit area

Additional Bend in Roll Hoop

Distributes impact loading evenly

No Additional Bend in Roll Hoop

• Bigger driver clearances

Strait Upper Nose Members

Higher front impact resistance

Bent Upper Nose Members

Narrows nose for front end

Frame Decision Matrix

Criteria	Weight (%)		Concept Score										
		Stra	ight FBMs	Be	nt FBMs	Additional RRH bend		Minimal RRH bends		Straight Nose		Bent Nose	
		Raw	Weighted	Raw	Weighted	Raw	Weighted	Raw	Weighted	Raw	Weighted	Raw	Weighted
Low weight	35	3	105	2	70	2	70	3	105	3	105	3	105
Ease of manufacturing	15	3	45	1	15	1	15	3	45	3	45	1	15
Ease of maintinence	15	2	30	1	15	1	15	2	30	2	30	1	15
Design flexibility	10	1	10	3	30	1	10	1	10	3	30	1	10
Aesthetics	5	1	5	2	10	3	15	2	10	1	5	2	10
Structual integrity	20	3	60	2	40	3	60	2	40	3	60	2	40
Totals	100	13	255	11	180	11	185	13	240	15	275	10	195

Figure 15: Frame Decision Matrix

- Few factors are decided upon.
- Most of frame geometry is predetermined.
- Even material selection lacks diversity of options.

Frame Decision Making

Design Necessities

- Must be compatible with front and rear suspension.
- Must allow space for all other subsystems.
- Must ensure certain subsystems are fully enclosed by the frame.
- Must comply with all rules.
- Must be able to easily adapt while in design phase.

Accounting for Design Necessities

- Multiple meetings/briefing with other sub-teams.
- Understanding how the frame affects other sub-teams.
- Understanding how other sub-teams affects the frame.
- Constant design updates being created and shared with the entire team.
- Checking each change with the rules to ensure compliance.

Figure 16: Frame V2.0

Figure 17: Frame V1.1

Frame Material Calculations

	Minimum Tubing	Primary Tubing	:	Secondary Tubing
material	1018 steel	4130 steel		4130 steel
OD (in)	1	1.25		1
Wall thickness (in)	0.12	0.065		0.035
carbon content (%)	0.18	0.3		0.3
E (kpsi)	29700	29700		29700
I (in⁴)	0.032710765	0.042602298		0.012367468
k _b (klb * in ²)	971.5097313	1265.288253	293.7785	367.3138007
S _y (kpsi)	52.9388	63.1		63.1
c (in)	0.5	0.625		0.5
S _b (klb*in)	3.463337331	4.301128015	0.837791	1.560774466
density (lb/in ³)	0.284	0.284		0.284
weight per foot (lb)	1.130611444	0.824671841	-0.30594	0.361613651

Figure 18: Frame Material Calculations

- Used excel sheet to calculate various materials and sizes.
- Objective is to find the lightest weight material that meets the minimum requirement.
- For primary tubing, a 1.25" OD and 0.065" wall thickness yielded the lowest weight.
- For secondary tubing, a 1.00" OD and 0.058" wall thickness was chosen.
- For tertiary tubing, a 1.00" OD and 0.035" wall thickness was chosen.

Frame Final CAD

Figure 19: Rear View

No Additional Bend in the Roll Hoop

Adhering to rules on bent member lengths

Easier to fabricate

Bent Front Bracing Members Strong enough in FEA

Larger cockpit

Strait Upper Nose Members

More compact nose

Easier to fabricate

Better interface for front end to work with

Higher front impact resistance

Figure 20: Top View

Frame FEA

Nine Scenarios simulated for multiple impact conditions

- Used overestimates for impacts
 and weights
- Lowest FOS of 1.65 was the top front impact with driver
- This is lower than we would like but this scenario highly unlikely

Figure 21: Frame FEA Analysis

Bill of Materials

	Initial Bill of Materials: Drivetrain								
Item	Qty. Vendor	Cost Range		Link	Notes				
B&S 10 HP Vanguard Engine	1 Briggs & Stratton	\$546.30	\$546.30	Briggs & Stratton	Price subject to change based on availability				
Fuel Tank	1 Pyrotect	\$225.00	\$225.00	Fuel Tank	New aluminum fuel tank required for all competing teams				
Fuel Line	1 Napa Auto	\$0.00	\$0.00	<u>1.5 ft of Fuel Line</u>	Donated by Napa/Excess from last year				
Kill Switches	2 Parker SportsCenter	\$51.00	\$51.00	ParkerYamaha	2 kill switches per rulebook requirements				
Primary ECVT Pulley	1 In-house	\$0.00	\$400.00	N/A	Price dependent on 6061-T6 Aluminum donations				
Linear Bearing for Splined Shaft	1 McMaster-Carr	\$278.89	\$278.89	ECVT Main Bearing	ECVT component that allows linear and rotational movement				
Gaged Secondary CVT Pulley	1 Gaged Engineering	\$0.00	\$0.00	Gaged CVT Specifications	Secondary from previous capstone teams				
Nema 23 2.8A Stepper Motor	1 StepperOnline	\$26.00	\$26.00	Stepper Motor	Arduino controlled stepper motor for ECVT primary				
US5881 Hall Effect Sensor	2 SainSmart	\$7.98	\$7.98	Arduino Sensor	Used to detect engine output RPM				
Arduino Components	TBD Arduino	\$0.00	\$40.00	Arduino	Prototyping may effect cost				
Bevel Gears	2 TBD	\$100.00	\$400.00	Bevel Gear Sets	Ongoing bevel gearbox design iterations				
Case Material	1 SpeedyMetals	\$0.00	\$500.00	<u>6x10 6061-T6</u>	Case material may be donated				
Case Manufacturing	2 Ping	\$0.00	\$0.00	N/A	Investment Cast				
5/8 Hollow Steel Tube	1 SpeedyMetals	\$27.36	\$27.36	5/8 OD Steel Tube	4 ft hollow steel tubing for custom driveshaft				
Closed Cell High Density Foam	1 USAFoam	\$22.36	\$22.36	<u>1/2 x 23 x 108</u>	Composite floorboard				
Safety Covers	2 SpeedyMetals	\$54.32	\$54.32	1/8 in. Aluminum Sheets	1/8" 6061 aluminum covers required for exposed components				
Misc. Hardware	TBD Copper State	\$20.00	\$150.00	Copper State Bolt & Nut	Hardware for assembly				
Unforseen Expenses	N/A Any	\$0.00	\$200.00	N/A	Accounting for potential unforseen expenses				
	Drivetrain Total:	\$1,359.21	\$2,929.21						
		Initial	Bill of Materials: Fr	ame					
4130 Steel Tubing 1.25"x0.065"	56ft Advanced Metals Sales	\$0	\$660.00	Primary Tubing					
4130 Steel Tubing 1.00"x0.058"	30ft Advanced Metals Sales	\$0	\$300.00	Secondary Tubing	Tubing donations for frame are pending				
4130 Steel Tubing 1.00"x0.035"	40ft Advanced Metals Sales	\$0	\$416.00	Tertiary Tubing					
4130 Steel Sqaure Tubing 1.00"x0.03	5 10f Advanced Metals Sales	\$0	\$128.00	Square Tubing					
4130 Steel Plate 0.125"	3ft^2 Advanced Metals Sales	\$75.00	\$75.00	0.125 Steel Plate	Eirewall material				
4130 Steel Plate 0.250"	2ft^2 Advanced Metals Sales	\$125.00	\$125.00	0.25 Steel Plate					
Dzus Fasteners	50 TBD	\$87	\$87	Fasteners	5/16" fasteners				
	Frame Total:	\$287	\$1,791.00						

Figure : Drivetrain/Frame BOM

Questions?

[1] (Najmy, Janshah, ElShamsi, Jorgenson, & Smith, 2019) Final Proposal for SAE Baja ECVT, 2019

[2] Grainger. Power Drive Pulleys. <u>https://www.grainger.com/category/power-transmission/sheaves-and-pulleys/timing-belt-pulleys</u>